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The numerical solution to the Buckley-Leverett equation in the presence of gravity is 
considered. An extension of the use of the Uniform Sampling Method to cases when the frac- 
tional flow function has more than one inflection point is described. Results of numerical 
experiments are presented. 

1. INTRODUCTION 

In Concus and Proskurowski [ 1 ] the numerical solution of the Buckley-Leverett 
equation in the absence of capillary pressure and gravitational forces was considered. 
In this note we extend the use of the Uniform Sampling Method (USM) to cases 
when the fractional flow function f(u) has more than one inflection point. For a 
description of the USM see Concus and Proskurowski [ 1, and references therein], 
where it was called a Random Choice Method. Here we shall only use the property 
that the USM is an optimally stable scheme, i.e., it is stable whenever the 
Courant-Friedrichs-Lewy (CFL) condition is met; see Strang [6]. 

2. SOLUTION OF A RIEMANN PROBLEM 

In the USM one is required to solve a set of Riemann problems. The Riemann 
problem is a hyperbolic differential equation with two constant states u, and u, to 
the left and to the right of a discontinuity as the initial conditions: 

a24 a 
(1) 

u(x, 0) = UL 1 x < 0, 
(2) 

= u,, x > 0. 

Now we present in some detail the solution of the Riemann problem without the 
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restrictions given in Concus and Proskurowski [ 11; see also the discussion in Gelfand 
14, Sects. 8,9]. Letf(u) in (1) be twice continuously differentiable and S,,, denote the 
slope of the chord l,,,(u) joining (u,,f(ul)) and (u,,f(uJ)) for any distinct points u, 
and uJ: 

Denote also 

a(u) = df(u)/du. 

On basis of the Rankine-Hugoniot jump condition and the E-condition of Oleinik 
we obtain the solution to our problem in the following form: 

(I) If u, < u, then 

(1.1) If over [uR, uJ the graph off(u) lies below the chord l,,,(u) then the 
relation a(uR) < S,,, < a(uL) holds over this interval and the state u = u, is 
connected to u = u, by a shock propagating with the speed S,,,. 

(1.2) If over [uR, uL] the graph off(u) lies above the chord I,,,(u) or the 
chord Z,,,(u) cuts the graph off(u) then one must construct a convex hull H(u) such 
that the graph off(u) remains fully below or on H(u) over this interval. In this case 
one needs to find all the points uM in (u, , u,) that are the ends of the subintervals on 
which H(u) andf(u) coincide. We obtain a set of intermediate points {u,}i+ i ordered 
as follows: u, < uM1 < ... < uMn < uL . If for any J the graph of f(u) over [u,, u,, i ] 
lies below the chord 1 J,J+,(u) then, as in (l.l), u, is connected to uJ+, by a shock 
propagating with the speed S,,,,, . Otherwise, i.e., if over [u,, u,, i] the hull H(u)- 
coincides with the function f(u), the states u, and u,+ , are connected by an expansion 
wave. 

(II) If u, < uR then 

(2.1) If over [u,, uR] the graph off(u) lies above the chord f,,,(u) then the 
relation u(urJ ( S,,, < a(~,) holds over this interval and the state u = uL is 
connected to u = u, by a shock propagating with the speed S,,,. 

(2.2) If over [u,, uRJ the graph of f(u) lies below the chord lL,R(~) or the 
chord Z,,,(u) cuts the graph off(u) then one must construct a convex hull h(u) such 
that the graph off(u) remains fully above or on h(u) over this interval. In this case 
one needs to find all the points u, in (u r, uR) that are the ends of the subintervals on 
which h(u) and f(u) coincide. We obtain a set of intermediate points (u,},“’ I ordered 
as follows: uL < u,, < ... < u,, < uR. If for any J the graph off(u) over [uJ, uJ+ , J 
lies above the chord 1 J,J+,(~) then, as in (2.1), uJ is connected to uJ+ I by a shock 
propagating with the speed SJ,J+,. Otherwise, i.e., if over [u,, a,,,] the hull h(u) 
coincides with the function f(u), the states u, and u,+ i are connected by an expansion 
wave. 
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FIG. 1. The shape of the fractional flow function f(u) in the presence of gravity. The case when 
uL > uR is indicated. 

3. EXAMPLES 

An example of (1.2) for the particular choice off(u) arising in our application is 
depicted in Fig. 1. There the state u = U, is connected to u = nM by an expansion 
wave, and u = uM is connected to uR by a shock propagating with speed S,,, > 0. 
Note that this case does not differ quantitatively from the example shown in Fig. 1 in 
Concus and Proskurowski [ 11. A similar example of (2.2) is depicted in Fig. 2. There 
the state u = U, is connected to u = u,, by a shock propagating with speed S,,,, < 0, 
u = u,, is connected to u = u,, by an expansion wave, and u = u,, is connected to 
u = uR by a shock propagating with speed S,,,, > 0. As a result, two shocks 
propagating in opposite directions are created, separated by an expansion wave. 

In the absence of capillarity, the one dimensional Buckley-Leverett equation for 
incompressible flow can be written in the form of Eq. (I), in consistant units, with 

’ f(u) 
LO- 

0.8 - 

0.6 - 

FIG. 2. Construction of a convex hull h(u) for the particular choice of f(u) and the case when 
u, < u,. 
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proper boundary and initial conditions. We consider the flow of oil and water 
through sand and denote by u the water saturation in the sand. The fractional flow 
function is j(u) =f,(u)( 1 - L&(u)), where f,,(u) = (1 + ak,(u)/k,(u))-‘, water 
relative permeability k,(u) = u*, oil relative permeability k,(u) = (1 -u)*, a is a 
constant ratio of viscosities of water and oil, and 1 is a constant that includes Darcy 
velocity, oil viscosity and water-oil density difference. The term L&(u) takes into 
account the gravitational forces; see Douglas et al. [2], Fayers and Sheldon [3] and 
references therein. In our experiments we have used the values of a = 0.5 and L = 10. 
The shape off(u) is depicted in Fig. 1 and we note that it has two inflection points, at 
u = 0.208 and u = 0.635. 

Equation (1) with the initial conditions 

u(x, 0) = 1 for x < 0 

=o for x > 0, 

and 
u(x, 0) = 0 for x < 0 

= 1 for x > 0, 

can be solved explicitly as a Riemann problem. 
In the case of (a) the solution consists of a discontinuity propagating with constant 

speed, followed by an expansion wave. We have 

u(x, t) = 0 for x > st 

= 0.95 1 for x = st 

= expansion wave for 0 < x ( st, 

where the propagation speed s = 1.025. In comparison with the case 2 = 0 (zero 
gravitational forces) the discontinuity is much steeper, 0.95 vs 0.58, although its 
speed of propagation is somewhat slower, 1.02 vs 1.37. In the case of (b) the solution 
consists of two discontinuities propagating in opposite directions with constant 
speeds, separated by an expansion wave. We have 

u(x, t) = 0.000 for x<s-t 

= 0.302 for x=s_t 

= expansion wave for s_t<x<s,t 

= 0.500 for x=s,t 

= 1.000 for x>s,t 

where the propagation speed s- = -3.49 and s, = 4.00. It should be noted that the 
backward shock wave is physically correct. A demonstration of this phenomenon in a 
simple model I owe to J. C. Martin. 
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FIG. 3. The development of a sharp front with time I from the smooth initial distribution u(x, 0) = 
O.l/(O.l + x). 

4. NUMERICAL EXPERIMENTS 

The numerical experiments were carried out in March 1979 on the DEK 10 
computer at the University of Southern California. The reported results were obtained 
with the space increment dx = 0.02 and the time step At such that the CFL condition 
was satisfied. The numerical results show that with the initial conditions (a) and (b) 
after 35 time steps with At = 0.0034 the discontinuity is kept perfectly sharp within 
one space step. The computed speed of propagation is s = 1.014 for (a), and s- = 
-3.38 and s+ = 3.89 for (b). The expansion waves connect the states between 0.955 
and 1.00 for (a), and 0.305 and 0.494 for (b). In the next example the initial 
distribution is u(x, 0) = O.l/(O.l + x) and the boundary condition is ~(0, t) = 1.0 for 
t 2 0. Here all the situations (with u, > uR) shown in Fig. 1 occur in solving the 
Riemann problems. The development of a sharp front as the time progresses is 
depicted on Fig. 3. In this example a variable time step was employed. The computed 
solution is drawn for the values of t = 0, 0.017, 0.080 and 0.400. Discontinuity of 
large magnitude develops much earlier that in the absence of gravity in agreement 
with the conclusion in Fayers and Sheldon [3], for the considered range of flow rates; 
see also Martin [5]. 

The number of the intermediate points Us between uL and u, is less than or equal 
to the number of inflection points of f(u) in the same interval. A general computer 
program for f(u) with many inflection points could be quite complex. On the other 
hand the actual code for the present problem is only slightly more complicated than 
that for the simpler case reported in Concus and Proskurowski [ 11. As a conse- 
quence, computational expenses remain practically the same. The CPU time for a one 
time step was 30 msec on the DEK 10. 
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